SUBJECT - DESIGN OF RCC STRUCTURES

Course Name	:	Civil Engineering
Course Code	:	CE / CS / CR / CV
Semester / Year	•	Sixth for CE/CS/CR
Subject Title	:	Design of RCC Structures
Subject Code	:	

Teaching and Examination Scheme :

Teaching Scheme		Examination Scheme						
TH	TU	PR	Paper Hrs.	TH	PR	OR	TW	Total
04	-	02	04	100	-	25#	50 @	175
# - External @ - Internal			* On L	ine Exan	ination			

Note :-

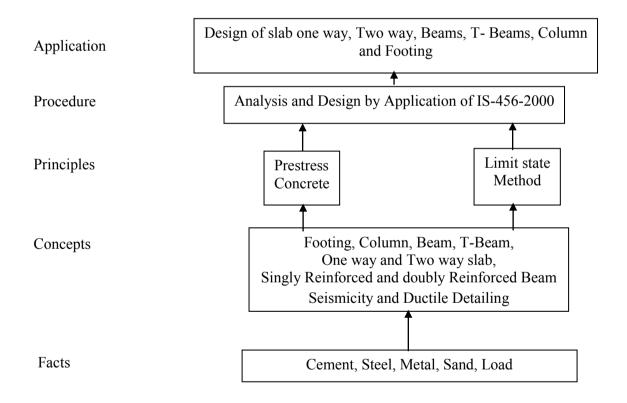
- 1) Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- 2) Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head sessional work (SW).

RATIONALE :

Design of RCC Structures is the subject at Technology Level. The pre-requisite knowledge, skills and competencies for this subject are expected to be achieved by studying the subjects Mechanics of Structures and Theory of Structures in earlier semesters.

Limit State Method is to be used in the design of RCC structures. IS:456-2000 is to be used for analysis and design and IS:875-1987 is to be used for Loading Standards. Analysis and design of building elements like slabs, beams, columns, footings and dog-legged staircase will be useful in structural design of an RCC building. Emphasis is also on preparation and interpretation of structural drawing and detailing. An elementary terminology of earthquake engineering and exposure to ductile detailing as per IS:13920-2002 has been provided through a separate topic.

An introductory topic on prestressed concrete will be useful to acquaint the learner with the another common mode of use of concrete.


Thus the contents of the subject will be useful to the diploma technician in effective supervision and quality control on site.

OBJECTIVES:

Students will be able to:

- 1. Understand the basic principles and procedure of design of slab, beam, column and footing of RCC building as per IS:456-2000
- 2. Understand reinforcement detailing of RCC structural members.
- 3. Understand design of singly reinforced, doubly reinforced and flanged section of beams, simply supported one way & two way slabs, cantilevers slab, axially loaded columns and footings by limit state method.
- 4. Understand, read and interpret structural drawings.
- 5. Understand ductile detailing of structural components of buildings

LEARNING STRUCTURE :

CONTENT : THEORY

Topic and Contents	Hours	Marks
Topic 1 : Introduction to Limit State Method	02	04
Specific Objectives :		
 State purpose of reinforcement in RCC Define limit states Enlist various types of loads on structures 		
Content :		
 Definition of RCC, functions of reinforcement, material properties, use of IS:456-2000 Definition and types of limit states, partial safety factors for material strength, characteristic strength Types of loads, use of IS:875-1987, characteristic load, design load 		
Topic 2 : Analysis and Design of Singly Reinforced Rectangular Sections by Limit State Method	08	12
Specific Objectives :		
 Draw strain and stress diagrams Calculate design constants and ultimate moment of resistance Design balanced and under-reinforced singly reinforced rectangular sections 		
Content :		
 Limit State of collapse (flexure) : assumptions, stress-strain relationship for concrete and steel, strain diagram and stress block diagram for singly reinforced section, design parameters and constants, ultimate moment of resistance Under- reinforced, over-reinforced and balanced sections : meaning and comparison Analysis and design : Numerical problems on determination of design constants, ultimate moment of resistance, ultimate load carrying capacity, design of balanced and under-reinforced sections 		
• IS specifications regarding spacing, cover, minimum reinforcement, effective span, etc. in beams		

Topic and Contents	Hours	Marks
Topic 3 : Analysis and Design of De Rectangular Sections by Limit State M	e e e e e e e e e e e e e e e e e e e	12
Specific Objectives :		
 Decide whether beam should be a reinforced Draw strain and stress diagram for Calculate ultimate moment of resi Design doubly reinforced balanced 	tbeams	
Content :		
 Meaning and conditions for provider reinforced beams Analysis of doubly reinforced sectors stress diagrams, numerical problem moment of resistance Design of doubly reinforced section problems on balanced design 	tions : strain and ns on ultimate	
Topic 4 : Analysis and Design of Flange Limit State Method	ed Beams by 06	12
Specific Objectives :		
 Calculate effective flange width Determine ultimate moment of res Design flanged beam by carrying 		
Content :		
 Meaning and conditions for forma and L) beams, comparison with re- effective width of flange Analysis of singly reinforced flang Introduction to cases of neutral ax ii) web. Detailed analysis and num for the case of neutral axis in the f Design of singly reinforced flange Numerical problems considering l supported slabs and walls for simp 	ctangular beams, ged beams : is in i) flange and herical problems lange only d beams : oads from	

Topic and Contents	Hours	Marks
Topic 5 : Shear and Bond by Limit State Method	08	12
Specific Objectives :		
 Calculate ultimate shear strength of beam Design beam for shear Draw reinforcement detailing diagram for shear Apply check for bond to beams and slabs 		
Content :		
 5.1 Shear : (08 marks) Meaning of shear in RCC beams and slabs. IS code specifications. Various forms of shear reinforcement in beams. Use of bent up bars. Zones of minimum shear reinforcement. Numerical problems on design of beams for shear 5.2 Bond : (04 marks) Meaning of bond in RCC. IS code provisions. Meaning and calculation development length in tension and compression. Check for bond for simply supported and cantilever beams and slabs 		
Topic 6 : Design of Slabs by Limit State Method	12	16
Specific Objectives :		
 Decide type of slab from the given plan Design various types of slabs Draw reinforcement detailing diagram for slabs Content : 		
 Definition and classification of slabs as one-way and two-way slabs, support conditions, main and distribution steel, I.S. specifications regarding spacing and cover for reinforcement, effective span, minimum reinforcement Limit state of serviceability for slabs : check for deflection Design of slabs : Procedure and numerical problems on design of one-way simply supported slabs, cantilever slabs, two-way simply supported slabs with corners free to lift and waist slab of dog-legged staircase Introduction to continuous one-way and two-way slabs : Meaning, advantages and typical reinforcement detailing diagrams (No numerical problems) 		

Topic and Contents	Hours	Marks
Topic 7 : Design of Columns and Footings by Limit State Method	08	16
 Specific Objectives : ➤ Calculate ultimate load carrying capacity of a given axially loaded column ➤ Design a column and draw reinforcement detailing ➤ Design isolated sloped footing and draw reinforcement detailing 		
Content :		
 7.1 Axially Loaded Short Columns (12 marks) Limit state of collapse in compression : assumptions, minimum eccentricity, slenderness ratio, short and long columns, calculation of ultimate load carrying capacity of axially loaded short rectangular and circular columns Load analysis for a column : calculation of load on an axially loaded column from beams at a floor and at various floor levels in a building Design of axially loaded short rectangular and circular columns : problems on design as per IS specifications for minimum and maximum reinforcement, transverse reinforcement, cover, etc. Reinforcement detailing at the floor to floor joints 		
 7.2 Axially Loaded Footings (04 marks) Introduction to various types of RCC footings like isolated stepped and sloped footings, combined footings, piles Design of isolated square sloped footing : Flexural design with checks for one-way shear, two-way shear and bond. (<i>Problems on design of footing for bending moment only in theory examination paper</i>) 		
Topic 8 : Seismicity and Ductile Detailing	04	04
 Specific Objectives : Define basic terms in seismicity Draw ductile detailing diagrams for common RCC members as per IS:13920-2002 		
 Content : Definition, magnitude and intensity of earthquake. Zones Earthquake damages to RCC Buildings like bond failure, shear cracking, slab tearing. Remedies Ductile Detailing Provisions in IS:13920-200 		

Topic and Contents	Hours	Marks
Topic 9 : Introduction to Prestressed Concrete	04	04
Specific Objectives :		
Compare prestressed concrete with RCC		
 Distinguish between pre-tensioning and post- tensioning 		
 Enlist losses of prestress 		
Content :		
 Meaning of prestressed concrete, comparison with 		
RCC. Advantages and disadvantages of prestressed concrete.		
 Methods of prestressing, pretensioning and post- tensioning 		
 Losses of prestress : meaning and list of losses 		
(No numerical problems shall be asked in written		
examination on this chapter)		
Total	64	100

PRACTICALS

Skills to be developed

Intellectual Skills :

- i) Design of structural components
- ii) Interpretation of structural drawings

Motor Skills :

i) Preparing structural drawings

Term work shall consist of the following :

1. Mini-project on structural design of a G + 2 framed residential building :

Design of slabs, beams, columns and footings for a simple plan of a G + 2 residential building based on the contents taught in the theory. Students should be encouraged to prepare their own architectural plan otherwise teacher will provide separate data of plan, dimensions and material grades separate for separate groups or batches of students; maximum batch size not exceeding 20.

The students shall submit the design details in the following form :

- a) Design Report as included in the Lab. Manual prescribed by MSBTE.
- b) Two full imperial size drawing sheets finished in pencils containing i) keyplan ii) reinforcement detailing for sample slabs and beams, column, column

footing of each type and staircase iii) schedules of slabs, beams, columns and footings iv) design notes

2. Study and Interpretation of Professional Structural Drawings :

Professional structural drawings including reinforcement detailing of the components slabs, beams, columns, footings and stair-case shall be collected from nearby consultants. Teacher shall set at least 10 objective questions on each of the five components based on the drawing sheets obtained. Each student shall write the answers in the corresponding exercise in the Lab. Manual of MSBTE.

LEARNING RESOURCES :

Books:

Sr.	Author	Title	Publisher
No.			
1.	Dr.V.L.Shah &	Limit State Theory and Design of	Structures Publications,
	Dr.S.R.Karve	Reinforced Concrete Structures	Pune
2.	N.C.Sinha &	Fundamentals of Reinforced	S.Chand & Co., New
	S.K.Roy	Concrete	Delhi
3.	N.Krishna Raju	Reinforced Concrete Design	New Age International,
	& R.N.Pranesh	Principles and Practice	Mumbai
4.	S.U.Pillai &	Reinforced concrete Design	Tata Mcgraw Hill
	Devdas Menon		
5.	P. C.Varghase	Limit State Design of Reinforced	Prentice Hall of India,
		Concrete	
6.	N.Krishna Raju	Prestressed Concrete	Tata McGraw Hill,
			Mumbai
7.	T.Y.Lin	Design of Prestressed Concrete	Wiley India
		Structures	
8.	David Dowrick	Earthquake Resistant Design and	Wiley India Pvt.Ltd.,
		Risk Reduction	New Delhi
9.	Steven L.	Geotechnical Earthquake	Pearson Education
	Kramer	Engineering	

I.S. Codes:

- 1. IS 456:2000 Plain and Reinforced concrete code of Practice
- 2. SP16- Design Aids for reinforced concrete to IS 456
- 3. I.S. 875 (Part 1-5) 1987 code of practice of design loads for Buildings and structures.
- 4. SP 24 Explanatory Handbook on IS 456
- 5. IS 1343-1980 Indian Standard code of (Reaffirmed 1990) Practice for Prestressed concrete.
- 6. SP34 : 1987 Handbook on concrete reinforcement and Detailing.
- 7. IS 13920-1993 Ductile Detailing of R. C. Building subjected to Seismic forces.

Softwares : 1.struds 2.scadds/nucleus r(200) 3.build master 4.staad.pro.vsi 5.etabs.9.5

1. Field Visits :

Structured field visits can be organized with proper planning to construction sites to view the following points :

- i) Reinforcement detailing of components like slabs, beams, columns, footing, staircase
- ii) Main concreting operations like batching, mixing, transporting, compacting and curing on site
- iii) Stacking of material like cement, sand, metal, steel, etc. on the site
- iv) Formwork for the various components
- v) Cutting and bending of bars on site
- vi) Verification of sample details in the structural drawing with the reinforcement actually provided on site

2. Development / Use of MS PowerPoint Slide Shows :

- i) Students can be asked to take digital photographs and videos of the details observed in the field visits. MS PowePoint Slide Shows and MS Movie maker clips can be developed from the photographs and videos by the students as special credit assignments.
- ii) Slide shows on earthquake damages and ductile detailing can be screened

3. Experts' Lectures / demonstrations :

Experts' lecture-demonstration presentations can be organized on the following topics :

- i) Modern site practices
- ii) Use of software packages for design
- iii) Case study of a major construction project

* * *